Pointwise error estimates of the local discontinuous Galerkin method for a second order elliptic problem

نویسنده

  • Hongsen Chen
چکیده

In this paper we derive some pointwise error estimates for the local discontinuous Galerkin (LDG) method for solving second-order elliptic problems in RN (N ≥ 2). Our results show that the pointwise errors of both the vector and scalar approximations of the LDG method are of the same order as those obtained in the L2 norm except for a logarithmic factor when the piecewise linear functions are used in the finite element spaces. Moreover, due to the weighted norms in the bounds, these pointwise error estimates indicate that when at least piecewise quadratic polynomials are used in the finite element spaces, the errors at any point z depend very weakly on the true solution and its derivatives in the regions far away from z. These localized error estimates are similar to those obtained for the standard conforming finite element method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pointwise error estimates for discontinuous Galerkin methods with lifting operators for elliptic problems

In this article, we prove some weighted pointwise estimates for three discontinuous Galerkin methods with lifting operators appearing in their corresponding bilinear forms. We consider a Dirichlet problem with a general second order elliptic operator.

متن کامل

Local and pointwise error estimates of the local discontinuous Galerkin method applied to the Stokes problem

We prove local and pointwise error estimates for the local discontinuous Galerkin method applied to the Stokes problem in two and three dimensions. By using techniques originally developed by A. Schatz [Math. Comp., 67 (1998), 877-899] to prove pointwise estimates for the Laplace equation, we prove optimal weighted pointwise estimates for both the velocity and the pressure for domains with smoo...

متن کامل

Local and Pointwise Error Estimates of the Local Discontinuous Galerkin Method Applied to Stokes Problem

We prove local and pointwise error estimates for the local discontinuous Galerkin method applied to Stokes problem in two and three dimensions. By using techniques originally developed by A. Schatz [Math. Comp., 67 (1998), 877-899] to prove pointwise estimates for the Laplace equation, we prove optimal weighted pointwise estimates for both the velocity and the pressure for domains with smooth b...

متن کامل

Pointwise a Posteriori Error Control for Discontinuous Galerkin Methods for Elliptic Problems

An a posteriori error bound for the maximum (pointwise) error for the interior penalty discontinuous Galerkin method for a standard elliptic model problem on polyhedral domains is presented. The computational domain is not required to be Lipschitz, thus allowing for domains with cracks and other irregular polyhedral domains. The proof is based on direct use of Green’s functions and varies subst...

متن کامل

A Priori Error Estimates for Some Discontinuous Galerkin Immersed Finite Element Methods

In this paper, we derive a priori error estimates for a class of interior penalty discontinuous Galerkin (DG) methods using immersed finite element (IFE) functions for a classic second-order elliptic interface problem. The error estimation shows that these methods can converge optimally in a mesh-dependent energy norm. The combination of IFEs and DG formulation in these methods allows local mes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2005